A pronic number is a number which is the product of two consecutive integers, that is, a number of the form n(n + 1).

The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers, or rectangular numbers; however, the “rectangular number” name has also been applied to the composite numbers.

The first few pronic numbers are:

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462

(sequence A002378 in the OEIS(On-Line Encyclopedia of Integer Sequences) ).

**Input:**
Enter a number: 110
**Output:**
Yes

import java.io.*; import java.util.*; public class temp{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); System.out.print("Enter a number: "); int n = sc.nextInt(); int flag = 0; for(int i=0; i<n; i++) { if(i*(i+1) == n) { flag = 1; break; } } if(flag == 1) System.out.println("Yes"); else System.out.println("No"); } }

**INPUT_1:**

Enter a number: 110

**OUTPUT:**

Yes

**INPUT_2:**

Enter a number: 73

**OUTPUT:**

No

**INPUT_3:**

Enter a number: 2

**OUTPUT:**

Yes

**INPUT_4:**

Enter a number: 462

**OUTPUT:**

Yes

**INPUT_5:**

Enter a number: 72

**OUTPUT:**

Yes

**INPUT_6:**

Enter a number: 6

**OUTPUT:**

Yes

**INPUT_7:**

Enter a number: 7

**OUTPUT:**

No

**INPUT_8:**

Enter a number: 90

**OUTPUT:**

Yes

**ILLUSTRATION**