Simon has given N ratios in the form of A and B that is represented as A/B. The values of A and B are represented as double data type values. The values of B are incorrect. The actual values of B are B+R. Simon know the actual sum of all the ratios that is available in variable K.

Note: The true values of B, represented as (B+R), are always greater than 0. Simon’s task is to determine the value of R.

Constraints:

1 <= N <= 1000

1 <= A <= 1000

|B| <= 1000

1 <= K <= 10^6

Input Format:

First line: Two integers N and col denoting the number of ratios and the value 2 respectively

Next N lines: Each line contains two double values A and B

Last line: A double value K denoting the sum of all the ratios

Output Format:

Print the value of R. Simon’s answer must contain an absolute or relative error of less than 10^-6.

#include<iostream> using namespace std; double func(double arr[10][2],double r,int n) { double ans = 0; for(int i = 0; i < n; i++) { ans+= arr[i][0]/(arr[i][1]+r); } return ans; } double maxi(double arr[10][2],int n) { double m=0; for(int i=0;i<n;i++) { if(m<arr[i][1]){m=arr[i][1];} } return m; } int main() { int n,col; cout<<"Enter the value of N and col(2 respectively): "; cin>>n>>col; double arr[10][2]; //col == 2 cout<<"Enter the ratio in form A and B: "; for (int i = 0; i < n; i++) { cin>>arr[i][0]>>arr[i][1]; } double hi=maxi(arr,n),lo=0.0,mid=0.0; double curr,k; cout<<"Enter the K value: "; cin>>k; while(hi-lo>1e-7) { mid=(hi+lo)/2; curr=func(arr,mid,n); if(curr<k) { lo = mid + 1e-7; } else { hi = mid - 1e-7; } } printf("%.6f",lo); return 0; }

**Explore**

1. Quantum Mechanics relation with quantum computing

2. Unzipping Files using Python

3. An Algorithm which accepts n integer values and calculates the average and prints it.

4. How can Quantum Computing merge with Virtual Reality ? !

5. Blockchain and Cryptocurrency. And their relations with Virtual Reality !!