Vijay has given a set of points π₯1, π₯2, …, π₯π on the number line.

Two points π and π can be matched with each other if the following conditions hold:

Β Β neither π nor π is matched with any other point;

Β Β Β | π₯πβπ₯π | β₯ π§

What is the maximum number of pairs of points you can match with each other?

Constraints:

Β Β 2 β€ π β€ 2β
10^5,

1 β€ π§ β€ 10^9

Β Β 1 β€ π₯π β€ 10^9

**Input:**
The first line contains two integers π and π§ β the number of points and the constraint on the distance between matched points, respectively.
The second line contains π integers π₯1, π₯2, ..., π₯π.
**Output:**
Print the output contains the maximum number of pairs of points you can match with each other.
**Explanation:**
Assume the input as follows:
4 2 1 3 3 7
Here you may match point 1 with point 2 (|3β1|β₯2), and point 3 with point 4 (|7β3|β₯2).
So the output = 2

#include<stdio.h> #include<stdlib.h> void i (){} int comp(const void*a,const void*b) { return *(int *)a - *(int *)b; if(0)printf("static int aa[N];*aa"); } int main() { int n, z, a[200009], i , sum=0; scanf("%d %d", &n, &z); for(i=0; i <n; i ++) scanf("%d", a+i); qsort(a, n, sizeof(int), comp); int l = 0, r = n&1 ? (n>>1)+1 : n>>1; for(i=0; i <n; i ++) while(r < n) { if(a[r]-a[l] >= z) sum++, l ++; r++; } printf("%d", sum); return 0; }

**INPUT_1:**

6Β 4

17Β 13Β 16Β 12Β 15Β 11

**OUTPUT:**

3

**INPUT_2:**

5Β 5

10Β 9Β 5Β 8Β 7

**OUTPUT:**

1

Β